Gapped Surface States in a Strong-Topological-Insulator Material.

نویسندگان

  • A P Weber
  • Q D Gibson
  • Huiwen Ji
  • A N Caruso
  • A V Fedorov
  • R J Cava
  • T Valla
چکیده

A three-dimensional strong-topological insulator or semimetal hosts topological surface states which are often said to be gapless so long as time-reversal symmetry is preserved. This narrative can be mistaken when surface state degeneracies occur away from time-reversal-invariant momenta. The mirror invariance of the system then becomes essential in protecting the existence of a surface Fermi surface. Here we show that such a case exists in the strong-topological-semimetal Bi(4)Se(3). Angle-resolved photoemission spectroscopy and ab initio calculations reveal partial gapping of surface bands on the Bi(2)Se(3) termination of Bi(4)Se(3)(111), where an 85 meV gap along Γ̅K̅ closes to zero toward the mirror-invariant Γ̅M̅ azimuth. The gap opening is attributed to an interband spin-orbit interaction that mixes states of opposite spin helicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gapped symmetry preserving surface state for the electron topological insulator

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. It is well known that the three-dimensional (3D) electronic topological insulator (TI) with charge-conservation and...

متن کامل

Quantum Hall states stabilized in semi-magnetic bilayers of topological insulators.

By breaking the time-reversal symmetry in three-dimensional topological insulators with the introduction of spontaneous magnetization or application of magnetic field, the surface states become gapped, leading to quantum anomalous Hall effect or quantum Hall effect, when the chemical potential locates inside the gap. Further breaking of inversion symmetry is possible by employing magnetic topol...

متن کامل

Creation of helical Dirac fermions by interfacing two gapped systems of ordinary fermions.

Topological insulators are a unique class of materials characterized by a Dirac cone state of helical Dirac fermions in the middle of a bulk gap. When the thickness of a three-dimensional topological insulator is reduced, however, the interaction between opposing surface states opens a gap that removes the helical Dirac cone, converting the material back to a normal system of ordinary fermions....

متن کامل

Role of Disorder and Interactions on the Surface of Topological Superconductors

In this work we study the surface properties of topological systems, with a special focus on topological superconductors without inversion symmetry. These materials provide a rich playground for multiple topological phenomena, showing boundary modes with linear and (or) flat dispersion arising from complex nodal structures. A remarkable characteristic of topological phases is their robustness t...

متن کامل

Unconventional transformation of spin Dirac phase across a topological quantum phase transition

The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 114 25  شماره 

صفحات  -

تاریخ انتشار 2015